RESEARCH ARTICLE

RESEARCH ON COLLOSTRUCTIONAL ANALYSIS OF "GET+ADJECTIVE" BASED ON THE CORPUS OF CONTEMPORARY AMERICAN ENGLISH

TIAN DONG¹, CAIYUE LIU^{2*}

¹Professor in School of Foreign Languages, North China Electric Power University, NO 689 Road, HuaDian Street, North District, Baoding, Hebei, China Email: yuyanxue110@163.com
²Graduate Student in School of Foreign Languages, North China Electric Power University, NO 689 Road, HuaDian Street, North District, Baoding, Hebei, China *Corresponding Author: hdcaiyue@163.com

ABSTRACT

CAIYUE LIU

Lexical acquisition is of great importance for EFL learners. Based on the theory of construction grammar and the Corpus of Contemporary American English (COCA), this paper adopts qualitative and quantitative methods to make an analysis of collostructional strength between adjectives and the construction of GET+ADJECTIVE (ADJ). It explores the frequency distribution, the semantic meaning and the pragmatic meaning of the construction in depth. There are 89 adjectives in the study and the results show that GET+ADJ, as a frequently used construction in life, appears the most in colloquial context. And it is an expression for the result of the state changes. Except neutral words, the adjectives in the construction are more likely to be negative than positive. Taking GET+ADJ as an example, the study aims to provide a new perspective and inspiration of lexical learning and teaching for both English teachers and learners, namely, a corpus-driven strategy for English learning and teaching, and a construction-based viewpoint for EFL teaching.

Keywords: CORPUS; ELF LEARNERS; CONSTRUCTION; GET+ADJ; COLLOSTRUCTIONAL STRENGTH; LEXICAL LEARNING AND TEACHING

1. Introduction

With the development of computer science, the establishment of corpus has led to the corpus-based language study. Corpus linguistics has been a new research trend in the field of linguistics. At the same time, in the theoretical linguistics, construction grammar, which essentially belongs to the field of cognitive linguistics, has attracted the extensive attention of linguists in recent years. Methods in the two fields have both advantages and disadvantages. The former provides a large corpus examples but cannot provide theoretical explanations to the language data; the latter relies

on linguists' "intuition" and "introspection" excessively in tradition, without the support of enough language data. Therefore, the effective combination of the two will be more conducive to the objective and comprehensive analysis of language phenomena.

Construction grammar is a theoretical system about language and grammar. Goldberg, the founder of the construction grammar, defines the meaning of construction as "a form-meaning pair" (1996). An important hypothesis of construction grammar is that the basic units of grammar are the grammatical constructions, not the syntactic units

Vol.6.Issue 3. 2018 (July-Sept)

and rules, and the grammatical knowledge is based on construction. The construction is a complex language symbol which combines the specific form with the specific meaning. As for the extensive scope of construction, Goldberg (1995) believed that almost all grammatical units, from the morpheme, the bottom of the language unit, to the sentence patterns in traditional grammar, can be seen as construction. The language system is regarded as a continuum including morpheme, word, half filled idioms, filled idioms and abstract constructions. From the morpheme to sentences there are no transformational-generative relationships. They are all regarded as form and meaning pairings with no real distinctions. This is a complete subversion to transformational-generative grammar.

In 2003, Stefanowitsch and Gries made an innovation on the collocation analysis of corpus linguistics under the framework of construction grammar in cognitive linguistics. They developed a program called Collostructional Analysis. This allows linguists explore program to the constructional meaning through comparing the collostructional strength between the morpheme in the construction slot and the construction. This is a beneficial attempt to combine the research method of corpus linguistics with the method of cognitive linguistics. According to different research goals, this method is extended into Collexeme Analysis, (Multiple) Distinctive Collexeme Analysis and Covarying Collexeme Analysis.

"Get", as one of the five most frequently used verbs according to the Corpus of Contemporary American English [COCA], is included in many constructions. This paper attempts to make a study on one typical construction of "get" as a linking verb--GET+ADJ, analyzing the collostruction of adjectives in ADJ slot and the construction GET+ADJ. The main aim of this paper is to answer the following questions:

- How is the construction distributed in different literary genres?
- 2) Which adjectives have stronger collostructional strength in GET+ADJ?
- 3) What characteristics do the adjectives have in ADJ slot of the construction?

2. Research Method

2.1 The Corpus Related to the Research--COCA

The Corpus of Contemporary American English (COCA) is a free online American English corpus developed by Professor Mark Davies in Brigham Young University, USA, and is the largest balanced corpus of English in the world today. The corpus contains more than 520 million words (from 1990 to now, an annual increase of about 20 million words of new corpus). It includes five types of subcorpus, namely, SPOKEN, FICTION, MAGAZINE, NEWSPAPER and ACDAMIC. And every sub-corpus basically displays balanced distribution. It is a good English reference resource for researchers, teachers and students. And it becomes an excellent window for learners to query and observe American English use and change. Its easy operation interface gives the researchers much convenience.

2.2 The Instrument--Coll. Analysis Program

It is a statistical program invented by Gries. And it can be operated in the R i386 3.3.2 software platform. As required, the data to be entered include the total size of the corpus, the total frequency of target construction in the corpus, the frequency of words in the corpus and the frequency of words in the target construction. Under the aid of the software, the collostructional strength can be calculated, with results shown in TXT document. And in this calculation, only when the result is more than three can it be drawn that the word has strong collostructional strength with the target construction for P is less than 0.001.

Research Journal of English Language and Literature (RJELAL)

A Peer Reviewed (Refereed) International Journal

Impact Factor 6.8992 (ICI) http://www.rjelal.com; Email:editorrjelal@gmail.com ISSN:2395-2636 (P); 2321-3108(O) Vol.6.Issue 3. 2018 (July-Sept)

RGui (32-bit) 文件编辑 查看其他 程序包 窗口 帮助 🛎 🖆 🖬 🖻 🔁 😔 🥌 - 0 X 😨 R Console If you use the program, PLEASE QUOTE IT as follows: Gries, Stefan Th. 2007. Coll.analysis 3.2a. A program for R for Windows 2.x. Press <Enter> to continue ... Which kind of analysis do you want to perform? 1: collocational/ collostructional strength, i.e. collexeme analysis (cf. <1\$ 2: (multiple) distinctive collocates or distinctive collexeme analysis (cf. \$ 3: co-varving collexeme analysis (cf. <3*.txt> for an example) Selection: 1 Collocational/collexeme analysis This kind of analysis computes the degree of attraction and repulsion between one word or construction and many other words using a user-defined statistic; all these statistics are based on 2-by-2 tables, and attraction and repulsion are indicated in a separate column in the output. What is the word W / the name of the construction C you investigate (without\$ 1: 4

Fig 1: The Operation Interface of Coll.Analysis in R i386 3.3.2

3.

2.3 The Research Procedure

In order to answer the questions, this paper attends to combine the quantitative analysis with introspection. Firstly, get the raw frequencies of the adjectives followed the verb GET in the COCA and record them in the table; Then, by manual inspection, remove adjectives which do not belong to the construction GET+ADJ and search the frequencies of every significant words; Finally, using the data, calculate the collostructional strength and make a thorough study.

3.1 Description of Results

Results and Discussion

To know the total frequency of GET+ADJ in COCA and its distribution in different literary genres, the author enters [get] [j*] in the CHART interface of COCA. There are 5 literary genres in the corpus, namely SPOKEN, FICTION, MAGAZINE, NEWSPAPER and ACDAMIC.

Corpus of Contempo	rary Am	erican	Engli	0 🖬 🛃 🕼	I 🖓 🕐		
SEARCH		CHA	NRT	CONTEXT	ACCOUNT		
SECTION (CLICK FOR SUB-SECTIONS) (SEE ALL SECTIONS AT ONCE)	FREQ	SIZE (M)	PER MIL	JCK FOR CONTEXT (SEE ALL)			
SPOKEN	39,089	109.4	357.33				
RCTION	31,986	104.9	304.92				
MAGAZINE	30,123	110,1	273.57				
NEWSPAPER	25,859	106.0	244.04				
ACADEMIC	6,043	103,4	58.43				

Fig 2 : Frequency Distribution of GET+ADJ in Different Genres

On the stylistic distribution, it can be known from Fig 2 that GET+ADJ is most used in spoken English, of which the frequency is 357.33 times per million, and it totally appears 39089 times in 109400000 words of SPOKEN corpus, followed by the fiction, magazine and newspaper, and the lowest frequency appears much less in academic style. So it can be concluded that GET+ADJ is more informal one.

To further analyze the collostructional strength between various adjectives and the construction GET+ADJ, it is necessary to collect the

total word frequency, the total frequency of the construction GET+ADJ in the corpus, the total frequency of the words in the construction, and the total frequency of the words in the corpus respectively.

To carry on the Collexeme Analysis, the first step is to open the COLLOCATES interface, enter "get" and choose "adj.all", thus the raw frequencies of adjectives in the target construction can be acquired. The first 100 adjectives are listed by frequency.

Adjectives	Frequency	Adjectives	Frequency	Adjectives	Frequency
1.ready	2928	35. wet	336	69.worried	124
2.used	2519	36. big	311	70.clear	122
3.involved	2429	37. scared	301	71.naked	121
4.lost	1598	38. busy	291	72.fresh	120
5.worse	1529	39.stronger	287	73.different	116
6.sick	1524	40.frustrated	282	74.hired	115
7.older	1405	41.hot	269	75.injured	114
8.hurt	1138	42.divorced	262	76.personal	114
9.pregnant	991	43.other	256	77.ugly	113
10.tired	971	44.cold	240	78.additional	112
11.good	945	45.warm	194	79.specific	112
12.better	932	46.creative	192	80.larger	111
13.mad	909	47.great	188	81.federal	110
14.angry	856	48.confused	183	82.little	110
15.stuck	834	49.higher	176	83.physical	109
16.real	825	50.smaller	167	84.lonely	107
17.rich	724	51.special	167	85.crazy	106
18.serious	664	52.re-elected	166	86.right	106
19.free	636	53.extra	165	87.infected	105
20.excited	635	54.healthy	162	88.past	97
21.drunk	601	55.medical	161	89.annoyed	96
22.high	526	56.depressed	160	90.young	96
23.killed	511	57.hungry	160	91.fixed	95
24.upset	496	58.engaged	157	92,adequate	92
25.bored	490	59.dirty	155	93.smart	92
26.new	462	60.interested	151	94.elected	91
27.married	458	61.full	149	95.accustomed	87
28.nervous	450	62.emotional	146	96.nasty	86
29.tough	428	63.fit	145	97.regular	85
30.old	415	64.bad	142	98,happy	83
31.close	411	65.richer	142	99.defensive	82
32.bigger	396	66.loose	135	100.complicated	80
33.comfortable	384	67.tougher	134		
34.lucky	359	68.clean	130		

Table 1 : Raw Frequencies of Adjectives in GET+ADJ in COCA

Vol.6.Issue 3. 2018 (July-Sept)

By manual inspection, some words which do not belong to the construction are removed, namely used, other, special, extra, medical, additional, federal, physical, young, and adequate. Because after these adjectives, there are still nouns, for example: *get medical care.* So these adjectives don't have research significance. Then the author searches the frequencies of the rest 90 adjectives in the corpus.

Adjectives	Frequency	Adjectives	Frequency	Adjectives	Frequency
1.ready	70343	31.bigger	27665	61.loose	17684
2. involved	75573	32.comfortable	27820	62.tougher	6206
3. lost	114047	33.lucky	21199	63.clean	41981
4. worse	39679	34. wet	20506	64.worried	28932
5. sick	27677	35. big	240175	65.clear	102820
6. older	60487	36. scared	17590	66.naked	13252
7. hurt	40213	37. busy	23608	67.fresh	50137
8. pregnant	16381	38.stronger	17669	68.different	217866
9. tired	24167	39.frustrated	9146	69.hired	19068
10. good	476387	40.hot	66719	70.injured	13614
11. better	219043	41.divorced	7882	71.personal	87970
12. mad	16696	42.cold	66569	72.ugly	11019
13. angry	27180	43.warm	38111	73.specific	57248
14. stuck	21648	44.creative	23123	74.larger	46256
15. real	161964	45.great	247823	75.little	375607
16. rich	44581	46.confused	12319	76.lonely	8595
17. serious	64714	47.higher	86438	77.crazy	28548
18. free	118739	48.smaller	34968	78.right	588449
19. excited	16602	49.re-elected	1241	79.infected	7495
20. drunk	12385	50.healthy	32628	80.past	172824
21. high	243422	51.depressed	7551	81.annoyed	3727
22. killed	62240	52.hungry	12497	82.fixed	16454
23. upset	17592	53.engaged	18828	83.smart	25799
24. bored	6330	54.dirty	15037	84.elected	22043
25. new	813382	55.interested	38395	85.accustomed	5346
26. married	51117	56.full	104849	86.nasty	6810
27. nervous	18354	57.emotional	30284	87.regular	35806
28. tough	42446	58.fit	39445	88,happy	64610
29. old	234254	59.bad	114499	89.defensive	15431
30. close	119366	60.richer	3412	90.complicated	17642

Table 2 : Frequencies of the 90 Adjectives in COCA

To carry on the collostructional analysis, the statistical analysis program called coll. analysis written by Gries should be loaded in the R i386 3.3.2 software platform. As required, the data to be entered include the 520 million total frequency of COCA, the 133100 total frequency of GET+ADJ construction in COCA, and the total frequency of the 90 adjectives lexeme in constructions and in COCA as in Table 1 and Table 2. This program requires that the lexeme data should be saved in plain text TXT, with the tab key to indicate the interval. After running the program, the collostructional strength can be calculated as in Table 3.

Vol.6.Issue 3. 2018 (July-Sept)

Table 3 : Collostructional Strength of the 90 Adjectives in GET +ADJ						
Adjectives	Coll.Strength	Adjectives	Coll.Strength	Adjectives	Coll.Strength	
1. ready	24181.5891	31. wet	2139.6153	61.accustomed	552.6693	
2. involved	18780.3307	32. divorced	2039.258	62. interested	543.4133	
3. sick	13439.7296	33. scared	1942.603	63. big	510.0362	
4. worse	12372.2806	34.stronger	1822.5155	64. hired	507.209	
5. older	9935.4418	35.re-elected	1769.9446	65. fit	503.5125	
6. lost	9695.033	36. busy	1689.0896	66. nasty	503.1601	
7. pregnant	8926.6806	37. close	1377.8917	67.worried	466.263	
8. hurt	8495.9705	38. high	1319.2767	68. higher	422.674	
9. mad	7990.9669	39. richer	1169.7342	69. fixed	411.034	
10. tired	7935.3169	40.confused	1129.5409	70. clean	410.1289	
11. stuck	6743.8092	41.depressed	1100.5774	71. crazy	370.0403	
12. angry	6573.1822	42. hot	980.8239	72.defensive	341.7641	
13. drunk	5140.6652	43. creative	965.6874	73. elected	335.738	
14. excited	5124.447	44. hungry	940.5308	74. fresh	322.4925	
15. bored	4661.3302	45. tougher	926.7487	75. smart	314.2343	
16. rich	4599.606	46. old	897.1256	76.complicated	309.3133	
17. upset	3696.9334	47. dirty	845.0426	77. larger	298.8171	
18. serious	3616.4763	48. cold	824.8613	78. full	266.7469	
19. better	3496.7405	49. warm	792.8099	79. specific	261.1224	
20. real	3376.0518	50. engaged	790.9057	80. new	229.4665	
21. nervous	3227.6982	51. annoyed	697.824	81. regular	227.1688	
22. free	2662.7917	52. smaller	662.1847	82. bad	222.97	
23. killed	2560.0539	53. loose	656.8886	83. personal	186.9922	
24. bigger	2415.7825	54. healthy	654.3152	84. clear	183.0335	
25. married	2372.362	55. infected	635.8564	85. great	159.5528	
26. tough	2315.7696	56. naked	630.9327	86. happy	134.9681	
27.comfortable	2314.929	57. lonely	623.0225	87. different	49.5002	
28. lucky	2309.6497	58. ugly	614.8896	88. past	46.8317	
29. good	2230.5227	59.emotional	581.5078	89. little	1.9102	
30.frustrated	2152.2158	60. injured	575.1857	90. right	-14.7785	
					(repulsion)	

In the collocation of adjectives and target construction as in Table 3, the larger the number is, the stronger collostructional strength the adjective has with the construction, namely, more suitable for collocating with "get". And from the 89th adjective lexeme in the GET+ADJ construction arranged by collostructional strength, the collostructional strength between adjectives and GET+ADJ is less than 3, losing statistical significance for the P value is more than or equal to 0.001, which means that the collostructional strength is very low. The collostructional strength of the previous 88 lexeme is greater than 3, having great statistical significance. Thus this study's subjects are the 88 adjectives that have great collostructional strength with the target construction. It is shown in Table 3 that the adjective "ready" has the strongest collostructional strength with the construction. The reason may be that people often say Get Ready in daily life. And it is followed by the adjectives involved, sick, worse, older, lost and so on. Taking the first 10 adjectives as example, the author retrieves their distribution in different genres as in Fig 3.(The reason why the numbers of frequency are different from Table1 is that the COCA is a dynamic corpus, so the number is changing. However, the trend or the rank of the

Vol.6.Issue 3. 2018 (July-Sept)

words is quite stable in a short period. Therefore the subtle changes can be ignored in this research.) From Fig 3, it can be seen most of them appear in SPOKEN context. To make it more clear, the author makes a pie chart of the frequency distribution. As it

shows, there are 34.7% of the first 10 adjectives in the construction GET+ADJ in SPOKEN corpus,while 20.3% in FICTION, 21.9% in MAGAZINE, 18.2% in NEWSPAPER and 4.9% in Academic. It is generally consistent with Fig 2.

CONTEXT	ALL 🗖	SPOKEN	FICTION	MAGAZINE	NEWSPAPER	
READY	3236	1124	784	715	518	95
INVOLVED	4302	1901	437	746	869	349
SICK	1623	537	380	415	246	45
WORSE	1703	670	257	294	400	82
OLDER	1472	534	119	466	256	97
LOST	1864	312	646	478	314	114
PREGNANT	1046	312	198	339	155	42
HURT	1450	494	403	240	284	29
MAD	976	333	282	178	153	30
TIRED	1026	278	284	226	209	29

Fig 3 Frequency Distribution of the First 10 Adjectives

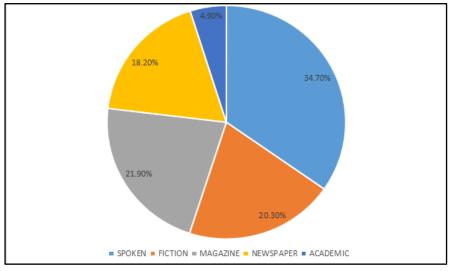


Fig 4 Frequency Distribution of the First 10 Adjectives

Compared Table 2 with Table 1, there are obvious differences in the rank of adjectives. Therefore the more one adjective appears in target construction doesn't mean the stronger collostructional strength it will have with the construction. However though the sequence of the adjectives are different, it can be seen the first ten adjectives in Table 3 almost maintain the same in Table 1 and Table 2. They have much stronger collostructional strength with the construction. And some adjectives' sequences have changed a lot, for example, good and tougher.

3.2 The Semantic Meaning of GET+ADJ

Although adjectives have a wide variety of conventional meanings, but in sentences they have relatively stable conceptual meanings, the main of which are the state of result, the state of manner and displacement path, as Jia Chen mentioned in her writing (2016). Observing the 88 adjectives with strong collostructional strength with the construction, the great majority are adjectives of result, and then adjectives of displacement path. In terms of semantic clustering, there are some adjectives of characteristics, such as age, color and speed; some of state of the body, such as vital signs

and physical feeling; and others of mental state, state of affairs, state of action and spatial displacement. To make it visible, the author has sorted the result into Table 4.

Due to the meaning of "get" itself which means "become" as a linking verb, the construction GET+ADJ's conceptual meaning is mainly to express the result of the state changes. And another point that should be paid attention to is that there are 10 adjectives of comparative degree in the 88 adjectives which have strong collostructional strengh with the construction. They are: worse, older, better, bigger, stronger, richer, tougher, smaller, higher and larger. The use of comparative degree also proves that the construction expresses the state changes. And as in Table 4, 72.8% of the adjectives express the result of states, including 12.5% of body change, 22.7% of mental change, 20.6% of affairs' state and 17.0% of action' state.

Classifications				
Conceptual Meanings	Semantic Clustering	Adjectives in GET+ADJ		
	Characteristics 20(22.7%)	older, rich, bigger, wet, stronger, richer, hot, creative, old, dirty, cold, warm, smaller, loose, big, clean, fresh, smart, larger, new		
	State of Body 11(12.5%)	sick, pregnant, hurt, tired, drunk, free, hungry, healthy, naked, injured, fit		
Result 84(95.5%)	Mental State 20(22.7%)	mad, angry, excited, bored, upset, nervous, comfortable, frustrated, scared, busy, confused, depressed, annoyed, lonely, emotional, interested, worried, crazy, defensive, happy		
	State of Affairs 18(20.6%)	worse, serious, better, real, tough, lucky, good, tougher, ugly, nasty, complicated, full, specific, regular, bad, clear, great, different		
	State of Action 15(17.0%)	ready, involved, lost, stuck, killed, married, divorced, re-elected, engaged, infected, accustomed, hired, fixed, elected, personal		
Displace- -ment Path 4(4.5%)	Spatial Displacement 4 (4.5%)	close, high, higher, past		

Table 4 : Semantic Classification of Adjectives in GET +ADJ

E.g. in COCA:

- "You'll never get rich." Buck barked a laugh. (characteristics)
- I didn't get pregnant for another seven years because I was so freaked out. (state of body)
- You didn't feel wrong with that? You didn't get confused? (mental state)
- 4) And the bad situation was going to get worse. (state of affairs)
- 5) I am not going to get involved in politics at this point. (state of action)
- Once we get close to the highway again, we'll find a hotel for the night. (spatial displacement)

3.3 The Pragmatic Meaning of GET+ADJ

According to Leech, pragmatics can be defined as the study of how utterances have meanings in situations (1983). So the pragmatic meaning of words is associated with human emotions. The pragmatic meaning of GET+ADJ can be positive, neutral, and negative, such as *get better* (positive change), *get engaged* (neutral change), *get mad* (negative change). In this study, the author makes analytic statistics of pragmatic features with the 88 adjectives that have strong collostructional strengh with GET+ADJ construction. It is shown in Table 5. Email:editorrjelal@gmail.com ISSN:2395-2636 (P); 2321-3108(O)

A Peer Reviewed (Refereed) International Journal

Impact Factor 6.8992 (ICI) http://www.rjelal.com;

Research Journal of English Language and Literature (RJELAL)

Positive Meaning	Neutral Meaning	Negative Meaning
ready, excited, better,	involved, older, pregnant, rich, real,	sick, worse, lost, hurt, mad, tired,
comfortable, lucky, good,	free, bigger, married, wet, divorced,	stuck, angry, drunk, bored, upset,
creative, healthy, fit, smart,	stronger, re-elected, busy, close, high,	serious, nervous, killed, tough,
great, happy	richer, hot, hungry, old, cold, warm,	frustrated, scared, tougher, dirty,
	engaged, smaller, naked, accustomed,	confused, depressed, annoyed,
	interested, big, hired, higher, fixed,	loose,
	clean, defensive, elected, fresh, larger,	infected, lonely, ugly, emotional,
	full, specific, new, regular, personal,	injured, nasty, worried, bad,
	clear, different, past	crazy, complicated
12 (13.6%)	43 (48.9%)	33 (37.5%)

In Table 5, positive adjectives occupy 13.6%, neutral adjectives occupy 48.9%, while negative adjectives occupy 37.5%. It can be concluded that the construction GET+ADJ is mostly used to describe objective changes, for neutral adjectives make up almost half of the 88 adjectives. Though the construction itself doesn't mean to be negative, people tend to use more negative adjectives than positive ones obviously.

4. Conclusion

Based on COCA and construction theory, this paper adopts qualitative and quantitative methods to explore the collostructional strength between adjectives and the construction GET+ADJ. Analyzing the data, it can be concluded that GET+ADJ, as a frequently used construction in life, appears mostly in colloquial context. And it is an expression for the result of the state changes. This is concluded from the data evidence of its everyday use in corpus. Moreover, except neutral words, the adjectives in GET+ADJ are more likely to be negative than positive.

Nowadays, students are at an information age that they have access to the great amount of data, which makes it possible for "data-driven learning". When it comes to learning foreign language, combining the corpus data with grammar will make learners have a deeper understanding of language use since they can acquire the lexicon from the everyday use but not the prescriptive grammar in class. Concretely, for primary learning period, when teaching lexicon, the teacher can collect real corpora in the corpus according to the teaching content before class and show the sentences to students in class. While in class, students should be given enough time to observe the sentences and discuss how to use the new word with each other. Under the guidance of the teacher, students can discover rules and make assumptions by observing the actual contexts. And after discussion, the teacher should help students summarize the grammar of the new word. By this way, students can learn the new words more autonomously. And also they can master the idiomatic English and develop the language awareness of English by exploratory learning. As for advanced learning period, students have greater autonomy. They can get information from the corpus on line by themselves. They are supposed to utilize the corpus to explore the usage of English words, which can directly expose them to complex language phenomenon. Well-established corpus like COCA can help users to summarize the most frequently used lexical collocation, as well as the most frequently expressed meaning and function, and help them learn to discover new language facts, as well as new meanings and usage patterns. And for more advanced learning period (or maybe it can be called research period), teachers together with students can build targeted small-size according to corpus specialized research requirements.

Different from traditional grammar, the construction grammar holds that form and meaning are indivisible. Thus in foreign language teaching, of course, this kind of construction concept should be put into the teaching practice. Teachers should encourage the students to pay attention to both form and meaning at the same time, considering the

Vol.6.Issue 3. 2018 (July-Sept)

Research Journal of English Language and Literature (RJELAL) A Peer Reviewed (Refereed) International Journal Impact Factor 6.8992 (ICI) http://www.rjelal.com;

Email:editorrjelal@gmail.com ISSN:2395-2636 (P); 2321-3108(O)

construction as a whole. In this paper, the author aims to use the construction GET+ADJ as an example to provide an collostructional perspective of lexical learning. So in class, teacher also can teach new words in the form of construction. And students can learn them more intensively by remembering more words in the construction. And certainly the construction-based ELF teaching concept the author advocates is relative but not absolute. The author is not denying the traditional teaching concept of vocabulary and grammar, but she is emphasizing that it is a supplement to traditional grammar. In addition, dealing with language phenomenon from the perspective of construction grammar may have a influence on the principles and methods of making students--oriented textbooks and dictionaries for foreign learners. For example, when editing English dictionaries, single words may not be the only thing that appears on the word list, constructions can also be on the list. And maybe one day, there will be specialized dictionaries for constructions.

In conclusion, at the big data age, corpusbased research should and also must serve the ELF teaching and teaching. And a construction concept can be a supplement to traditional grammar in ELF teaching.

Reference

- Goldberg, A. (1996). Construction Grammar. *Concise Encyclopedia of Syntactic Theories*. Oxford: Elsevier, 1996: 68– 71.
- Goldberg, A. (1995). Constructions: A Construction Grammar Approach to Argument Structure. Chicago: The University of Chicago Press.
- Gries, S. & Stefanowitsch, A. (2004a). Extending Collostructional Analysis: A Corpus-based Perspective on 'Alternations'. International Journal of Corpus Linguistics, (1): 97-129.
- Gries, S. (2014). Coll.analysis 3.5. A Script for R to Compute Perform Collostructional Analyses. http://www.linguistics.ucsb.edu/faculty/stg ries/teaching/groningen/.
- Jia, Chen. (2016). Corpus-Based Analysis of Constructional Semantics, Stylistic Distribution and Cognitive Motivation of

COME/GO+ADJ. Journal of Tianjin Foreign Studies University, 23(06):46-52.

- Jian Hu. & Jiayi Zhang. (2012). The Combination of Cognitive Linguistics and Corpus Linguistics: Collostructional Analysis. *Foreign Languages*, (4) : 61-69.
- Leech, G. N. (1983). *Principles of Pragmatics*. Longman.
- Manhua Chen. (2009). The Enlightenment of Construction Grammar Theory to Second Language Teaching. *Language Teaching and Research*, (04):64-70.
- Mark Davies. Corpus of Contemporary American English. https://corpus.byu.edu/coca/

R Platform. https://www.r-project.org/.

- Stefanowitsch, A. &Gries, S. (2003). Collostructions: Investigating the Interaction between Words and Constructions. International Journal of Corpus Linguistics, (2): 209 – 243.
- Xiaohua Li. & Lifei Wang. (2010). Construction Grammar Perspective of Second Language Acquisition: Construction Theory and Enlightenment. *Foreign Language Research*, (02): 107-111.